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Abstract

Environmental pollutant exposures are major risk factors for adverse health outcomes, with 

increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful 

components of traffic-related air pollution. Exposure to DE affects several physiological systems, 

including the airways, and pulmonary diseases are increased in highly populated urban areas. 

Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust 

aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects 

of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development 

of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on 

the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains 

particulate matter (PM) and more than 400 additional chemical constituents. The major toxic 

constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and 

PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will 

first discuss the associations between DE from conventional as well as clean fuel technologies and 

acute and chronic airway inflammation. We will then review possible activation and/or 

potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. 

Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could 

control the link between DE and airway inflammation, which is a primary determinant leading to 

pulmonary disease.
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Introduction

Epidemiologic investigations have linked human morbidity and mortality to elevated levels 

of traffic-related air pollution and ambient particulate matter (PM) [1–3]. Ambient and 

synthetic PM is capable of inducing airway inflammation [4]. Besides PM, engine emissions 

contain more than 400 species of harmful chemicals, many of which are incorporated into 

ambient PM. Key components of chemicals in traffic-related air pollutants are polycyclic 

aromatic hydrocarbons (PAHs), which also have strong apoptotic and pro-inflammatory 

actions on airways [5, 6]. Some of the main producers of PMs and PAHs in traffic-related air 

pollutants are diesel engines. Diesel-related PAHs may represent a major source of gaseous 

hydrocarbons in urban environments [7]. In this review, we will discuss data on how diesel 

exhaust (DE) and two major toxic constituents, PM and PAHs, could involve transient 

receptor potential channels (TRPs) to regulate multiple cellular pathways and produce 

airway inflammation, which is considered a critical event in the mechanistic pathway 

leading to human pulmonary disease.

TRPs and conventional diesel-induced airway inflammation

Diesel exhaust particles (DEP) are available from several commercial and “in-house” 

generated sources. DEP are often used to model health effects in controlled exposures in 

animals and humans [8]. For research purposes, the source for DEP is vital and can strongly 

influence the outcome of experiments. Generally, data obtained with in-house-generated 

DEP is the most reliable and reproducible [9, 10].

In humans, moderate (>300 μg/m3) but not lower doses of DEP from older-generation 

engines (referred to as conventional DEP) induce acute but reversible airway inflammation 

and impair pulmonary function without causing persistent airway hyperreactivity (AHR) [4, 

11–13]. The acute adverse effects of conventional DEP have been associated with the 

production of inflammatory mediators from airway macrophages and epithelial cells [4, 12–
14]. Aside from acute inflammation of airways, in-house-generated conventional DEP 

samples can act as an adjuvant, leading to chronic airway inflammation by enhancing 

allergic sensitization via amplification of allergic responses [15]. In this context, 

conventional DEP synergize with allergens to create allergic asthma phenotypes [10], which 

are characterized by the promotion of T-helper type 2 (Th2) immune responses that are 

associated with IL-4 and allergen-specific IgE production in animals and humans and AHR 

in animal models of allergic asthma [15–19].

Mechanisms underlying the generation of acute, and especially chronic, airway 

inflammation and dysfunction by conventional DEP are still not completely clear. 

Nevertheless, several theories have emerged. One line of investigation provided solid 

evidence that the electrophilic components of conventional DEP induce Ca2+ influx and 

activate inward currents in airway epithelial cell lines via TRP vanilloid type 1 (TRPV1) 

[20–22] (Fig. 1). The use of DEP that do not generate chronic allergic inflammation [10], 

however, also exhibited small responses in TRPA1 overexpressing cell lines [23] (Fig. 1). 

Activation of airway neurons and primary and acutely isolated non-neuronal lung cells, 

including epithelial cells, by conventional DEP has not been reported.
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The originally suggested mechanism of DEP actions on airways postulates that oxy- and 

nitro-PAHs, components of conventional DEP, are metabolized in macrophages and 

epithelial cells by several isoforms of cytochrome P450s (CYPs) into quinones. Quinones 

generate excess reactive oxygen species (ROS) which, in turn, induce inflammatory 

mediator production in macrophages and airway epithelial cells [8]. Very high, non-

physiological concentrations (>100 μM) of quinones as well as ROS are capable activating 

cell lines overexpressing TRPV1, and to a lesser extent, TRPA1 [23–25] (Fig. 1). Activation 

of airway neurons and lung non-neuronal cells via TRPV1 and TRPA1 channels with 

physiological concentrations of quinones and ROS has not been studied. Moreover, there are 

alternative cellular pathways for ROS action that show an increase in the activation of 

nociceptive pulmonary vagal C fibers via a non-TRPA1 and non-TRPV1 protein kinase C 

pathway [26]. Nonetheless, activation and/or potentiation of TRPV1, and to a lesser extent, 

TRPA1 by DEP, are putative mechanisms leading to the induction of airway inflammation. It 

is now well accepted that TRPV1 and TRPA1 can be gated by two classes of ligands, 

electrophilic or lipophilic, and both can be derived from exogenous or endogenous sources. 

In this regard, ROS and pH represent endogenous electrophilic compounds [27], while 

capsaicin and PAHs are exogenous lipophilic compounds. During the last decade, we and 

others have discovered several physiologically important endogenous lipophilic TRPV1- or 

TRPA1-activating ligands, including endocannabinoids, vanilloids, and arachidonic and 

linoleic acid metabolites [28–31]. Interestingly, PAHs activate CYP enzymes [8], which are 

capable of catalyzing the production of TRPV1-and TRPA1-activating endogenous lipids 

[28, 29, 32, 33]. Further, TRPV1 and TRPA1 are Ca2+-permeable ion channels; hence, their 

activation could lead to an intracellular Ca2+ ([Ca2+]i) rise in airway cells, which can result 

in induction of NF-κB and NFAT with subsequent pro-inflammatory mediator production 

and release [34–37] (Fig. 1).

The above pathways have been used in experiments designed to explain the role of 

conventional DEP in acute airway inflammation in animals and humans. However, these two 

pathways, and especially, the role of TRPA1 or TRPV1 in DEP-induced allergic asthma, 

have not been demonstrated as of yet. It is an important and relevant topic of research, since 

TRPA1 [38] and, according to some reports, TRPV1 [39, 40], could be involved in the 

development of allergic asthma in a basic ovalbumin (OVA) murine asthma model. 

Interestingly, specific ablation of TRPV1-expressing pulmonary C fibers blocked OVA-

induced AHR but not airway inflammation [40], suggesting that TRPV1 may control 

bronchial smooth muscle contraction while TRPA1 could be more important for allergic 

inflammation.

TRPs and clean diesel-induced airway inflammation

In response to the toxicities of conventional DE, clean diesel technologies have been 

developed to reduce emissions of nitrogen oxides (NOx), PM, and certain toxic PAHs [41, 

42]. There are two primary approaches to clean diesel technologies: (1) development of 

“cleaner” fuels such as ultra-low sulfur diesel and biodiesel or (2) the use of post-

combustion aftertreatments, such as diesel particulate filters (DPF) and catalytic conversion-
based modifications (Fig. 2). The most widely implemented post-combustion catalytic 

systems include diesel oxidation catalyst (DOC), urea selective catalytic reduction (SCR), 
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and diesel particulate NOx reduction (DPNR), which are typically used in combination with 

a DPF (Fig. 2). Hence, unlike conventional DEP, all clean diesel aftertreatments incorporate 

a DPF, which dramatically reduces PM mass in clean DE. Besides reduction of PM mass 

(30–50-fold), these technologies substantially decrease the size of emitted PM and reduce 

NOx and certain PAHs, particularly the most toxic oxy- and nitro-PAHs (Tables 1 and 2). 

Despite these sophisticated aftertreatment systems for DE, it has recently been reported that 

emissions from ultra-low sulfur diesel, as well as DPF and SCR-treated DE, may still cause 

acute lung inflammation similar to conventional DE [43–46]. These reports have shown that 

clean diesel can still utilize the PAH oxidization pathway and ROS generation in cells [8] to 

cause acute lung inflammation [45, 46]. Thus, it was suggested that ultra-fine PM in clean 

DE could be as harmful, if not more, than the PM from conventional DE [44].

The contribution of clean diesel to allergic asthma is grossly understudied, and to our 

knowledge there are no publications on this topic. Additionally, epidemiological studies on 

clean diesel health effects would be difficult to conduct, since the current truck fleets consist 

of a variety of vehicles with and without clean diesel systems. Also, the effects of clean DE 

on TRPs have not been studied. Thus, there is a critical gap in knowledge, since the 

development and adoption of novel clean diesel technologies is a rapidly evolving process 

that urgently requires additional information on the potential health hazards versus benefits 

of clean diesel.

TRP activation by PM and PAH in the induction of airway inflammation

The formulation of novel clean diesel technologies can considerably be aided by 

understanding the relative health hazards/benefits of conventional/clean diesel components. 

There is agreement that among the >400 different toxic constituents in DE, there are three 

dominant components: PM, NOx, and PAHs. Activation of TRPs by the larger particle-sized 

PM from conventional DE but not the ultra-fine PM present in clean DE has been studied 

[20–22]. The current view is that PM activates TRPV1 and, perhaps to a lesser extent, 

TRPA1. Synthetic particles of different sizes that can be detected in conventional DE have 

been shown to generate depolarizing currents and increase Ca2+ influx in capsaicin- and 

acid-sensitive sensory neurons and in TRPV1-expressing HEK 293 cells [21]. PM activation 

of epithelial cell lines, which express TRPV1, can trigger apoptosis [21]. Interestingly, 

environmental PM generated from coal and oil fly ash and ash from Mount St. Helens also 

activates TRPV1 [20, 47]. In contrast, some reports indicate that PM from conventional DEP 

activates TRPA1 in overexpressing cells and dorsal root ganglion neurons [23]. One of the 

DEP (NIST 2975) utilized in these studies also generated chronic inflammation but not AHR 

in an allergic asthma model [9]. In addition, Ca2+ influx assays have not been performed at 

the single cell level; hence, Ca2+ influx in cultured DRG cells could be attributed to damage 

of DRG cells by DEP or by activation of non-neuronal cells, which are present in DRG 

cultures [23]. Moreover, the concentrations of DEP required for the activation of TRP 

channels are also a vital parameter. Thus, the use of >80 μg/ml DEP for TRPA1 activation in 

an overexpressing system will unlikely model true exposure response, since that amount of 

DEP in DE would not exist even in highly polluted areas [23].
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There are more than 50 different types of PAHs in DE. They can be divided into five major 

categories: unsubstituted, oxy-, nitro-, benzo- and methyl-PAHs (Tables 1 and 2). Tables 1 

and 2 show that different types of aftertreatments or combinations of aftertreatments not 

only reduce PM in exhaust but also substantially diminish PAHs. Importantly, some 

aftertreatment systems, such as SCR and DPNR, almost completely remove nitro- and oxy-

PAHs and some unsubstituted PAHs from DE. To investigate the activation of TRPs by 

PAHs, realistic concentrations have to be selected. Thus, Table 1 represents the calculation 

of PAHs produced by a diesel engine that was driven for 1 km [48–50]. Activation of TRPs 

by realistic concentrations of different classes of PAHs is unknown as yet.

It is well documented that NOx and PM can cause acute lung inflammation; these actions 

may involve TRP channels [20–23, 25, 51]. PAHs also produce acute inflammation in the 

pulmonary system via generation of quinones and ROS (Fig. 1) [8]. While it is clear that 

unfractionated DEP and NOx promote allergic asthma, it is as yet unknown which of the 

individual components of DEP, i.e., the carbon core of PM, electrophilic components of PM, 

individual constituent PAHs, or a combination of these, are the primary adjuvants that 

promote allergic asthma. Overall, many questions need to be addressed in this research field 

to fully understand the adverse impact on the pulmonary system by conventional and 

especially clean DE and their predominant chemical components.

Types of pulmonary cells targeted by conventional and clean DE

Considering that conventional and clean DE could modulate TRP channels and potentially 

lead to acute and chronic airway inflammation, what types of cells could mediate these 

actions? Several TRP mRNAs and proteins have been identified in non-neuronal airway 

cells. Thus, using RT-PCR and in situ hybridization, low level of TRPV1 mRNA was seen in 

non-neuronal lung cells [52, 53]. Pathological conditions may or may not affect TRPV1 

expression in non-neuronal lung cells [54, 55]. Other reports indicate that TRPA1, but not 

TRPV1, is expressed in mouse and human lung epithelial and smooth muscle cells [56]. 

Moreover, several human lung epithelial and smooth muscle cell lines respond to specific 

TRPA1 activation [56]. However, it is still not clear whether TRPV1- or TRPA1-gated 

currents could be recorded from acutely isolated non-neuronal lung cells that did not 

undergo in vitro culture and immortalization procedures. This is a principal and critical 

question, since it has been speculated that acute and chronic inflammation in the pulmonary 

system could be mainly neurogenic in nature [38]. The concept of neurogenic inflammatory 

mechanisms in chronic pulmonary disease has been proposed for many years as a part of the 

axon reflex theory [57]. This process is thought to involve the release of sensory 

neuropeptides, such as substance P (SP), neurokinin A (NKA), and calcitonin gene-related 

peptide (CGRP) [58–60]. Expression of SP and NKA can be seen in back-traced airway 

jugular and nodose ganglia [61]. In models of allergic asthma, SP and NKA expressed in the 

terminals of C fibers can be locally released upon stimulation of these terminals and produce 

potent effects on airway smooth muscle tone, mucus secretion, and edema and on immune 

cells that impact neurogenic inflammation. These neuropeptides act via specialized NK1, 

NK2, or CGRP receptors, which are present on non-neuronal lung cells [62–64]. Blocking 

NK1 and NK2 attenuates the allergic inflammatory response. Despite this wealth of 

information, there is still no direct proof that sensory neuropeptides are key controllers of 
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chronic airway inflammation. Expression of these neuropeptides in certain non-neuronal 

lung cells further complicates the overall picture. Moreover, direct application of CGRP into 

airways reduced AHR without altering the overall inflammatory response, suggesting a 

potentially protective modulatory role for CGRP [65]. Additionally, NKA inhibition has had 

a modest impact on human asthma, and apparent differences between animal and human 

studies could be explained by the relatively sparse release of tachykinins from human tissue 

[66, 67].

Nevertheless, the involvement of airway nerves and neuronal TRPs in the development of 

allergic asthma and possibly COPD has plenty of indirect support. TRPA1 was identified as 

the receptor for some of the principal components of cigarette smoke causing neurogenic 

inflammation [68]. However, this response is heavily influenced by TRPV1 [69]. Allergen 

exposure potentiates activities of nodose ganglion neurons and TRPV1 channels on vagal C 

fibers [70]. Allergen-induced airway inflammation increased capsaicin sensitivity in 

myelinated pulmonary afferents with an increased expression of TRPV1 in nodose ganglia 

[71]. Hydrogen sulfide has also been shown to sensitize TRPV1 channels [72]. TRPV1-

expressing fibers induce a counter-regulatory mechanism to suppress endotoxin-induced 

airway inflammation via the release of somatostatin [73].

A number of important studies have been conducted in rodent models of asthma using OVA 

as the allergen, with intraperitoneal sensitizing injections followed by OVA inhalational 

challenge, a model heavily dependent on immune mechanisms. TRPA1 pharmacological 

inhibition attenuated the late asthmatic response in rats after OVA challenge [74]. TRPA1, 

but not TRPV1, global ablation resulted in substantial reduction in Th2 cytokines, airway 

inflammation, and methacholine (Mth)- provoked AHR [38]. On the other hand, other 

reports showed that suppression of TRPV1 channels with siRNA attenuated OVA- or IL-13-

induced airway inflammation and Mth-provoked AHR [39]. TRPV1 inhibitors also 

attenuated histamine-provoked AHR in OVA-sensitized guinea pigs [75]. Moreover, 

depletion of TRPV1-expressing cells (not only TRPV1-positive sensory neurons) blocked 

allergen-induced AHR but not airway inflammation [40]. These results could be interpreted 

to suggest that TRPV1 may influence primary control of bronchial smooth muscle 

contractility and that TRPA1 could be more important for allergic inflammation.

Overall, despite a substantial amount of information on the roles of TRPA1 and TRPV1 in 

acute and chronic airway inflammation and AHR, there is yet no consensus. The mixed 

findings could be due to methodological or strain differences. The models used in the 

allergen sensitization studies described above employed sensitization by intraperitoneal 

exposure to allergen (i.e., OVA) followed by inhalational challenge with OVA, which may 

bypass pulmonary sensitization mechanisms, particularly those that involve neural 

sensitization and a critical role for pulmonary mast cells. Functional expression of TRPs in 

the lung is also not fully established. Moreover, TRPV1 and TRPA1 have significant 

interactions and synergy [76–78]. One possible mechanism is that modulation of these 

channels occurs within a complex containing associated TRPA1 and TRPV1 channels and 

adapter protein Tmem100 [79, 80]. In this respect, conventional and clean DE, PM, and 

PAHs could act via several sites and activate (or potentiate) TRP channels on several lung 
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cell types—non-neuronal and neuronal. The roles of these activation sites by DEP, PM, and 

PAHs are yet to be fully investigated.

Conclusions

Rapid growth of the world’s population, development of major urban centers, and increasing 

use of internal combustion vehicles make it imperative to study the adverse effects of traffic-

related air pollution on human health. These requirements are especially demanding with the 

development of new fuel technologies, which are already widely used throughout the world. 

Recent studies imply that TRP channels could play critical roles in mediating adverse effects 

of air pollutants, but there are still many unanswered questions, which have been discussed 

in this review. In this respect, involvement of TRP channels in mediating possible adverse 

effects of clean diesel and its key components, ultra-fine PM and PAHs, remains a priority. 

These studies will provide invaluable knowledge for evaluating and understanding the 

adverse effects of new fuels as well as formulating novel and safer DE aftertreatment 

technologies.
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Fig. 1. 
Schematic for Ca2+-dependent and Ca2+-independent mechanisms underlying conventional 

DEP-induced acute airway inflammation and lung damage. Particulate matter (PM) and oxy-

and nitro-substituted subclasses of polycyclic aromatic hydrocarbons (PAH) could activate 

TRPV1 and TRPA1 channels. This could induce Ca2+-dependent production and release of 

pro-inflammatory mediators with subsequent airway inflammation. PAHs could also induce 

reactive oxygen species (ROS) formation in lung cells and Ca2+-independent generation of 

pro-inflammatory mediators. DEP PM refers to the particular matter component of diesel 

exhaust particles (DEP). DEP diesel exhaust particles, ECs electrophilic components. 

Dashed lines and question marks indicate putative TRPV1 and/or TRPA1 activation 

pathways
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Fig. 2. 
Generation of clean DE. Schematic represents different post-combustion aftertreatments. 

DPF diesel particulate filter, OC oxidation catalyst, LNT lean NOx trap, cDEP control diesel 

exhaust particles, DOC diesel oxidation catalyst, SCR selective catalytic reduction, DPNR 
diesel particulate and NOx reduction; Arrows indicate the injection of fuel or urea for SCR
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Table 1

Composition of clean DEP with different aftertreatments

PM and PAHs DOC DPNR SCR fDEP

Particulate mass 32 11 35 38

Phenanthrene 0.9 0.51 1.1 1.1

Anthracene 0.19 0.068 0.11 0.2

Fluoranthene 0.89 0.18 0.49 0.96

Pyrene 1.6 0.53 0.52 1.3

Chrysene 1.3 0.19 0.27 3.2

9-Nitroanthracene 1.4 0.022 UD 2.7

2/3-Nitrofluoranthene 0.015 UD UD UD

4-Nitropyrene 0.06 UD UD UD

1-Nitropyrene 1.3 UD UD 2.4

2-Nitropyrene UD UD UD UD

Oxy-PAHs 26.73 2.621 1.119 35.36

Methyl-PAHs 1.096 1.148 1.016 1.232

Compositional analysis of DEP from three diesel vehicles with different aftertreatment systems, diesel oxidation catalyst (DOC), DPF and NOx 
reduction system (DNPF), and a urea-based selective catalytic reduction system (SCR). Particulate mass is measured in mg/km and polycyclic 
aromatic hydrocarbons (PAH) in μg/km. fDEP represents control filtered DEP with reduced particulate mass, but without additional aftertreatment. 
DOC, diesel particulate NOx reduction (DPNR), and SCR represent different aftertreatments of DE. The amounts of oxy- and methyl-PAHs are the 
combined amounts of all subtypes of these PAHs. Significant changes are underlined

UD, undetectable
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Table 2

Effect of aftertreatment on reduction of DEP PAHs using combined aftertreatments

Compounds, ng/filter Engine out Aftertreatment out % Reduction

2-Methylnaphthalene 5578 139 97.5 %

1-Methylnaphthalene 2141 48 97.8 %

Naphthalene 4973 791 84.1 %

Biphenyl 1249 37 97.0 %

Acenaphthylene 1171 <1.0 –

Acenaphthene 147 22 84.9 %

Fluorene 1141 11 99.0 %

Phenanthrene 3355 78 97.7 %

Anthracene 362 3 99.2 %

Fluoranthene 411 12 97.2 %

Pyrene 1000 8 99.2 %

Perylene 7 <1.0 –

Chrysene 82 <1.0 –

Coronene 28 <1.0 –

Benzo(b,j)fluoranthene 16 <1.0 –

Benzo(k)fluoranthene 7 <1.0 –

Benzo(e)pyrene 38 <1.0 –

Benzo(a)pyrene 33 <1.0 –

Benzo(a)anthracene 49 <1.0 –

Indeno(123-cd)pyrene 9 <1.0 –

Dibenz(ah)anthracene 2 <1.0 –

Benzo(b)chrysene 2 <1.0 –

Benzo(ghi)perylene 77 <1.0 –

DEP were collected from a 2012 6.7L Ford engine equipped with DOC, DPF, and SCR aftertreatments using the Federal Test Procedure (FTP) 
heavy-duty transient cycle. Organic extracts were analyzed by gas chromatography/ionized mass spectrometry according to California 
Environmental Protection Agency method 429

Semin Immunopathol. Author manuscript; available in PMC 2016 June 07.


	Abstract
	Introduction
	TRPs and conventional diesel-induced airway inflammation
	TRPs and clean diesel-induced airway inflammation
	TRP activation by PM and PAH in the induction of airway inflammation
	Types of pulmonary cells targeted by conventional and clean DE
	Conclusions
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2

